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Abstract. An N-cusp soliton solution of the Hany Dym equation (WE) is constructed 
explicitly. The proposed approach is based on the algebraic ‘effectivization’ of the 
reciprocal links between the systems consisting of N higher-order analogues of the HDE 
and the corresponding analogues of the Kdv equation. An important role in the discussed 
scheme belongs to the reciprocal autoBkkIund transformation for the D p  hierarchy. 

1. Introduction 

Multisoliton solutions of the non-hear evolution equations have been obtained by 
different methods. Among them one can mention the inverse scattering transform 
(IST), the BHcklund transformation technique, the Hirota bilinear method, and the 
use of links with well studied equations. The present paper deals with the Harry 
Dym equation (HDE) rt = P ~ P ~ ~ ~  [l]  for which an explicit derivation of multisoliton 
solutions in the framework of the above methods is either impossible in principle or 
meets such analytical difficulties that make it practically impossible (see section 2). To 
all appearances this is the reason that the multisoliton solutions of the HDE (except 
the one-soliton case) have not yet been reported explicitly. 

The HDE belongs to a special class of integrable non-linear evolution equations 
found by Wadati et a1 [Z]. It has long been known that the HDE is related to the 
classical string problem [3-51, can be ‘tractable’ by the IST [6], has a bi-Hamiltonian 
structure [7l, and possesses an infinite number of conservation laws [S,7,8] and 
symmetries [9, lo]. Also known are some properties of auto-Backlund transformations 
[16] for it. 

Being related to the Kdv equation via reciprocal links [13-191 and to the mKdV 
equation by the Ishimori transformation [ l l ,  121, the HDE belongs to a class of non- 
linear evolution equations of ‘not normal type’ [ZO] and possesses some specific 
features which separate it from ‘usual‘ integrable systems in 1 + 1 dimensions. For 
example, a set of an infinite number of the HDE’s higher-order analogues called 
the Dym hierarchy [S, 161 has the abundant symmetry structure [ZO]. The HDE also 
possesses the so-called ‘weak-Painleve‘ property [14,15] rather than the usual Painlev6 
one. 

Another essential point is that the one-soliton solution of the HDE (the so-called 
cusp soliton) which was initially obtained by the IST [6] and later derived by the ‘direct 
integration method’ I191 cannot be expressed in a closed form and has an implicit 
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nature. It reads as follows: 

r ( z ,  t )  = tanh2[$(p,z + pl&(e , t )  + P:t - (31 (1) 

where pI, C,” are real constants. The transendental phase e(., t )  is defined implicitly 
by the equation 

(2) 
2 +-  I PI 

and is related to ~ ( z , t )  by the equation 

Notice that (1) and (2) describe the one-soliton solution completely and have the 
form which cannot be improved analytically. In this sense the one-soliton solution of 
the HDE implicit by its nature has been constructed explicitly. 

As a natural generalization of (1) and (2) the N-soliton solution of the HDE can 
be expected to have the form 

r ( z , t )=F ( [ , ,  ...,[,) r d l  as lz1-+w (4) 
Ck = p k ~  + P k 4 z r t )  + - C i  k = 1,. . ., N (5) 

where pk,  C i  are real constants, the phase ~ ( z , t ) ,  being related to r ( z , t )  by (3), 
is defmed by 

Equations (4)-(6) will describe the N-soliton solution of the HDE completely if 
one fmds the functions F(CI, . , . I&) and G(C1,. . . , C N )  explicitly. This is the main 
aim of the present paper. 

Our approach is based on the joint integration of the system which consists of the 
first N HDE’s higher-order analogues. In other words, we assume that the HDE N -  
soliton solution depends on N - 1 ‘higher times’ t,, m = 2,. . . , N ,  and obeys the 
above system. Another essential point is an ‘effectivization’ of the links between the 
Nth-order HD system and the Nth-order Kdv systems. By ‘effectivization’ we imply 
the procedure of deriving novel algebraic relations between the quantities related by 
simple transformations to the solutions of these systems. As a result, we construct 
the implicit-by-its-nature N-soliton solution of the HDE explicitly. Since this solution 
splits apart at the limit 111 i 00 into N cusp solitons, it is natural to call this solution 
as the N-cusp soliton solution. 

Let us emphasize that the HDE was recently found to be relevant to the so-called 
Saffman-Taylor problem, i.e. the problem of the displacement of a viscous fluid by a 
less viscous one in a Hele-Shaw cell [21-U]. 

The organization of this paper is as follows. In section 2 we explain why the 
traditional use of the links between the HDE and the KdV or mKdv equations as 
well as an application of the IST give only the parametric representation for the HDE 
multisoliton solutions and therefore are not effective from the analytic point of view. 
In section 3 we present the scheme of constructing the N-cusp soliton solution of the 
HDE and its higher-order analogues and describe the Fial results. 
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2. Preliminaries 

In this section we discuss briefly the known links between the HDE and the Kdv 
equation [13-191 or the mKdV equation [11,12]. The result of the IST application 
for the N-soliton case derived on the basis of [6] is also considered here. We show 
why the direct use of the above links and the IST constructions are not effective from 
analytic point of veiw for explicit derivation of the HDE multisoliton solutions. 

The transformation from the Kdv equation 

u7 - 6uuY + uyYy  = 0 U = "(Y, ' )  

considered with the boundary conditions U - 0 as lyl 3 00, to the HDE 

(7) 3 
Tt  = T Tznn T = T ( l ,  t )  

with the boundary conditions T -3 1 as 1x1 --* 03, involves the following steps. 
Firstly, one has to consider the Miura transformation 

"U) 
u = 5 ( u  1 2  - 2  

which gives the Riccati equation for v(y ,  T ) .  The function v(y, 7 )  is known to obey 
the mKdV equation 

(8) 3 2  21, - 2" .Uy -f UYYY = 0. 

The further use of the Cole-Hopf transformation 

leads to the function R ( y ,  T )  with the boundary conditions R -3 1 as IyI + 00. 

Finally, the reciprocal transformation 

Y 
s = / R( y'. T )  dy' T = -t (9)  

(T -3 1 as 1x1 -3 co), which obeys the HDE (7). 

Remnrk. One can take the Miura transformation in the form 

U = +(d2 t 221;) 

where w ' ( y , ~ )  also solves the mKdV equation (8). Then the function R'(y,r)  
introduced by the ColeHopf transformation U' = Rh/R' defines the HDE 
solution ~ ' ( s ' , t ' )  which is related to T ( + ,  t )  by the reciprocal auto-Bicklund 
transformation [16]. 
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Another form of the same transformation implies the start from the mKdV 
equation (8) written as 

0, - $3; t o,,, = 0 

where 0, = U and 0 + 0 as Iyl 
by the ‘Ishimori transformation’ [12] 

CO. The HDE solution r(z,t) is then obtained 

Y 
c = / exp0dy’  T = -t r(z,t) = R ( y , r )  = expO(y,r) .  (12) 

The analysis of both the above transformations shows that the obtained HDE 
solution is intrinsically implicit. Indeed, let 

Then (9) and (10) can be written as 

Y = c t 4 + , t )  (14) 

where 

E ( + , f )  = E(Y,T) (15) 

and 

r(z, t)  = N Y ,  7). (16) 

Knowing the functions E ( y , r )  and R(y , r ) ,  (14)-(16) describe the HD 
‘decreasing’ (T 3 1 as 1x1 --* CO) solution completely the phase ~ ( + , t )  is defined 
implicitly by (15) and the solution itself is given explicitly by (16). 

Notice that on use of (15), (13) and (9) the function ~ ( z , t )  can be written 
as in (3). Hence, the one-soliton solution of the HDE possesses exactly the form 
(14)-(16) with 

1 P 

Now, let us consider what happenes in the multisoliton case. Taking a decreasing 
solution of the mKdv equation (11) in the form 

O(Y,T) = 2(q1,. . . q N )  q k  = pky - p t r  - ct  k = 1,. . . , N (17) 

where p k ,  c j  are real constants, due to (12) one easily finds the function 
F ( q l , .  . . qN) R(y, T ) .  But for the complete description of the HDE solution 
one needs (15), that is the function G ( q l , .  . . , qN):  

G(VI I . . V N )  E ( Y  3 7) 
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As follows from (13), this function is to be calculated by 

G(vI,. . .,vN) = L [ I -  F(qi,. . . i q ~ ) l d y .  (18) 

For arbitrary N the function F(ql , .  . . , qN) obtained by means of the m~dv solution 
O(y, T )  has rather complicated dependence on y and the analytic calculation of G 
seems to be extremely difficult. Therefore the traditional use of the links between the 
HDE and mKdv (or Kdv) equation, although it gives the parametric representation (18) 
for G, is not effective for the explicit construction of the HDE multisoliton solutions 
from an analytic point of view. 

When constructing the HDE multisoliton solutions by means of the IST [6], one 
meets the analytical difficulties of the same level. The solution of the Gel’fand- 
Levitan equations, contained in the paper mentioned, gives explicitly only the function 
F ( q l , .  . . , qN). It reads as follows: 

where qb is given by (17), (14) and (3), B is an N x N matrix with matrix elements 

and the matrix I?(”) is obtained from B by changing the mth column by 2exp(-q,). 
The function G(ql,. . . , qN) which is necessary for the complete description of the 
N-soliton solution is again to be calculated by (18). Thus the problem is also reduced 
to handling with the reciprocal transformation and this creates impenetrable analytic 
difficulties. 

The approach proposed in the present paper allows one to obtain a representation 
for the function F ( q ! , .  . . , qN) = R(y, T ) ,  such that an explicit calculation of the 
reciprocal transformation (18) becomes a trivial analytic problem. 

3. The scheme of constructing the W E  soliton solution and final results 

The main idea of our approach to constructing the N-soliton solution of the HDE is 
to assume it to depend on N - 1 additional parameteres-‘higher times’ tZ ,  . . . , tN. 
In other words we integrate the system which consists from the first N higher-order 
anaIogues of the HDE [5,16] 

T*” = T 3 [ - a 3 1 T ] n T - 3 T s  n = 1,. . . N (19) 

where the operator I is defined by 

I ip(x , t )  = p(x’,t)dz’. lm 
Now by t we denote the vector t = ( t l , .  . . , tN) .  Notice that the dynamics of the 
HDE itself is described in terms of the component t,. 
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We shall seek a 'decreasing' (r  + 1 as 1x1 + CO) solution of the Nth-order HD 
system (19) in the form 

where 
T ( " , t )  = F(C) 

c = (Cl, . . . , CN) 

p,, e:, k = 1 , .  . . , N, are real constants and the phase function &(I, t )  related to 
r ( z , t )  by (3) is defined implicitly by 

e ( + , f )  = G(5) .  (21) 
Our aim is to find the functions F ( 0 ,  G(C) explicitly. Let us subsequently 

differentiate (21) with respect to t,, m = 1 , . . . , N. This yields the set of equations 

m = . , N  (22) 
N 

Eldm -I- &t_(z? t)1p:,Gck(C) = ~ t _ ( z , t )  
k = 1  

where subscripts t,, Ck denote the corresponding partial derivatives. 

k = 1 , .  . . , N. It is easy to verify that its solution has the form 
These equations can be considered as the Nth-order algebraic system on G[,(C), 

where 

Here P is a N x N matrix with the entries P,, = pZm, A,, is an algebraic adjunct 
of the element P,,. 

Now we differentiate (21) with respect to I and make use of the relation 
+ 1 = l /r ,  which follows from (3). In a result we obtain 

A,, = A,,/detP. (3) 

k = l  
Further substitution of (23) to the last equation gives 

where 
N 

k=l 
A,, is given by (24). Notice that up to now we have not used the fact that r ( z , t )  
has to obey the HD system (19). The obtained relation (25) is a consequence of the 
phase function e(x,i) definition (3), the form of the functional equation (21) on 
~ ( z ,  1) and simple operations with the algebraic system (22). 

Now, using the fact that r ( z ,  t.) has to solve the system (19), we are going to find 
some new expressions for the quantities E ~ _ ( I ,  t ) ,  m = 1 , .  . . , N. To do this we 
shall use the known [16] links between the Dym and the Kdv hierarchies. 
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Lemma 1. Let the function 

U ( y , r )  = -2a:lnQ(y,r) (27) 

U7" = -L"U , n=1, ..., N (28) 

obey the system, which consists of the first N 'higher' Kdv analogues 

where the operator L is defined by 

It is assumed that ay I n n  + 0 as IyI + 03. 

Let the function ~ ( z , t ) ,  T + 1 as 1x1 + CO, obey the HD system (19), which is 
reciprocally associated [16] with the K ~ V  system (28). In particular, the reciprocal 
links between these systems imply that 

y = z + e ( z , t )  r=- t  (29) 
where ~ ( z , t )  is given by (3). 

these systems: 
Then there exist the following relations between the quantities related to each of 

E t t ( 2 , t ) =  - 4 a ; l n n ( y , r ) E Z U ( y , r )  (30) 
et_(r , t )=4a'~- ,aylnn(y ,r )  m = 2  ,..., N (31) 

where the change of variables (29) is implied. 

Proof. As follows from [16] the solution U of the KdV system (28) is linked with the 
solution T ( z , ~ )  of the HD system (19) as follows: 

e t , ( z , t )  -Ix 3 d d =  2U(y , r )  
-m 

where the change of variables (29) which links the above system is implied. The last 
relation is exactly (30). To obtain (31) we make use of the fact [16] that the higher 
KdV analogues can be written in terms of the quatities E ~ , :  

UTm(y , r )  = -$a,~~,+~(z,t) n = 1,. . . , N - 1. (33) 
Now let us insert the function U written in the form (27) to the RSH of the 

last equation and take into account the boundary conditions d,lnO + 0 and 
" t ,  --f 0 as IyI - 03. The first condition is indicated in the formulation of 
lemma 1. The second one follows from the fact that e ( z , t )  + 0 as I -3 -CO, 

~ ( z , b ) + ~ ~ = S _ ~ ( r - ~ - l ) d l :  <03, henceEtm(z, t ) -+Oas 1z/-oo,anddue to 
(29) IyI - CO as 111 i 03. These conditions allow one to take off the derivative with 
respect to y in both sides of (33) and thereby to obtain (31). Now let us again return 
to the relation (25) which upon use of (30) and (31) and the change of variables (29) 
can be written as 

where are -8,. 

KdV system (28). This choice is controlled by the following. 
The next step is to choose an appropriate solution U(y, r )  (equation (27)) of the 
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Lemma 2. Let a solution U(y, T) of the Kdv system (28) in the vicinity of points 
yk E Y ~ ( T ) ,  k = 1 , .  . . , N ,  have the asymptotic behaviour 

+0(1) k = l ,  ..., N 
2 

(Y - YkY U(Y,T)  = (35) 

Then the solution r(z,t) of the HD system (19) which corresponds to it under 
the transformation (29) in the vicinity of the points xk(t), k = 1,. . . N ,  defined by 
y, = zk + E(z~, t),  is characterized by the asymptotic behaviour 

?-(x,t) = Ck(2 - Zk)2 '3  + 0 ( ( x  - x,)4'3) (36) 

where C, are some constants. 

Proof. S i c e  T~~ = T ~ T ~ ~ ~ ,  y = x + ~(x,t) and a, = ( l /R)a= ,  where R ( ~ , T )  = 
r (z , t ) ,  T = -t, (32) can be written as 

Now by the simple direct calculation one can show that for the function U(y,  7 )  

to have the expansion (35) the function R(y ,r )  in (37) has to be characterized as 
y - y, by the asymptotic behaviour 

R(Y, T) = U R ( Y  - YR)' + O((Y - ~ k ) ~ )  k = 1,. ., VN (38) 

where ak are arbitrary coi.stants. 

of (29) that 
To rewrite the last relation in terms of the variable x let us notice on the basis 

Y - Y k = " - Z k + E ( ~ , T ) - E E ( ~ k . T )  (39) 

where E(y, T) 
E(y, r )  and on use of (39) one obtains 

E(., t).  Since E, = 1 - R, one can easily find the expansion for 

Y - Y k  = (C) ( X - l k ) 1 / 3 + O ( ( I - - + k ) z ' 3 ) .  (40) 

Finally, the insertion of the last relation to (38) leads to the representation (36) with 

Notice tbat in the one-soliton case R(y,7)  = tanb' [;p(y - y,(r))] (see (I)). 
Thus, in this case al = ( i p )  and the cusp soliton in the vicinity of its zero has the 
form 

c, = (9ak)1/3. 

2 

T - ( $ p ) 2 / 3 ( r  - Zl(t))?/3 2 -+ Z l ( t ) .  

The corresponding KdV solution U (  y, 7) related to R by (37) reads 

PZ 
2sinh2 [ f d y  - yl(.r))1 ' 

U(Y, .) = 
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In the vicinity of y1 it is characterized by the asymptotic behaviour (35) 
and is known to be linked with the KdV one-soliton solution 6'(y, r) = 
-ip2cosh-z [$p(y - yl(~))] by the auto-Backlund transformation [SI 

2 

U t 6' = 4 [J_",( U - 6') d y'] . 
For arbitrary N the situation is similar to that in the case N = 1. The solution 

of the mv system which has N double poles y k ( ~ )  (equation (35)) is linked with 
the N-soliton solution by the same auto-Baklnnd transformation. This solution can 
be written in the form (27) with 

~ ( Y , T )  = x ' e q ( $ ( B m , m )  + (q t i r m , m ) )  (41) 
~ E Z N  

where the components qk of the vector q = (ql,. . . , q N )  are given by (20) with the 
change z + E(=, 1) = y, t = -T. Here B is an N x N symmetric matrix with the 
entries 

Bkl = 2h - P k  -PI Bkk=O. 1 %  +PI I 
By E' we denote the summation over the vectors m E ZN which components are 
equal to 0 or 1, (.,.) is the standard inner product: (q, m) = Er='=, qkmk. 

Now lemmas 1 and 2 guarantee that the function a(y, T )  given by (41) generates 
by means of (34) the function R ( ~ , T )  which has double zeros at the points 
U ~ ( T ) ,  k = 1,  ..., N (see (38)) and due to (40) produces the solution ~ ( z , b )  
of the KdV system with N 'cusps' (36) at the corresponding points zk(t ) .  

But (34) with Q(y, T )  given by (41) gives only a rather difficult integro-functional 
equation on this N-cusp solution since 

y =z+E(z,t) = z t 1) dz'. 

It can be written in the form (14)-(16) with R(y,r) explicitly given by (34) (now 
it is assumed that t = (t l , .  . . , b N ) ,  T = ( T ~ , .  . . , T ~ ) ) .  But the representation 
obtained for R(y, T )  is not appropriate for analytical handling with the reciprocal 
transformation (13). We remind ourselves that it is this point which was crucial in 
using other approaches to the explicit construction of the HDE multisoliton solutions 
discussed in section 2 (that is the traditional use of the links between the HDE and 
the KdV or mKdV equations and the IST application). The approach proposed in the 
present paper has the advantage that the mentioned problem can be easily solved. 
This will be done by passing from (34) to such representation for R ( ~ , T )  which 
makes the calculation of the reciprocal transformation trivial. 

Theorem. The function R(y, 7) given by (34) can be represented in the form 
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where the function f ( y ,  T )  is determined by the N-soliton soliton of the Kdv system: 

i i (y ,  T )  = -7.8; In f (y ,  T )  

and reads as follows [24]: 

f ( Y , 7 . )  = C k E Z N  exp(4(Bm,m) t hm)) ’ (43) 

Here all the designations are the same as in (41). 

Proof. The solution U ( ~ , T )  and O(y ,r )  of the K ~ V  system linked by the auto- 
Backlund transformation are lmown [16] to generate via reciprocal links the solutions 
of the HD system ~ ( x , t )  and ~’ ( z ‘ , t ’ )  respectively, the latter being linked by the 
reciprocal auto-Backlund transformation for the HD hierarchy. In particular, this 
implies that 

P - l ( z r t )  = P ‘ ( Z ’ , t ‘ )  (44) 

and y 
similalyr to e and T. 

~ ’ ( x ’ ,  t’) one obtains 

x + € ( z i t )  = 2’ t ~ ‘ ( x ’ , t ‘ ) ,  T = 4’ = -1, where E’ is related to P’ 

Applying now all the constuctions which led to (34) to the pair f ( y , r )  H 

where f (y ,  T )  is given by (43). Finally, the link R’(y, T )  = l /R(y ,  T )  which follows 
from (44) leads to (42). 
On the basis of such representation for R(y, T )  the calculation of the reciprocal 

transformation (13) is trivial. Taking into account that arm-, Inf(y,r)l y=-m - 0  - 
one easily obtains 

Since 

where 
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Using the definition (26), (24) of the constants a, on can show (see appendix) 
that 

1 
P s  = - 

Pk 

Finally, the equation (46) defining implicitly the phase function E ( x , ~ ) ,  on use 
of (43), can be written as 

where ,8 E RN has the components (48), all other designations are the same as 
in (41). 

Knowing the solution E ( x , ~ )  of the functional equation (49), the solution T ( I ,  t )  
of the HD system is given explicitly by the equation 

Now we show how this representation for R(y,r) follows from that obtained 
earlier, i.e. (34) and (42). To this end we rewrite (42) in the form 

and (34) in the form 

where 

N 

W f l =  f 2 - 4 C P k 1 [ f ( a y a , J f )  -(ayf)(aqkf)l. 
k=l 

W[S2] is the similar expression where f is substituted by R. 
It follows from the explicit formulae for f and Q, that in both fractions (51) and 

(52) the numerators and denominators are linear combinations of exp(Cc='=l nkqk), 
where each of the integers nk may take the value of 0, 1 or 2. Moreover, these 
fractions are equal iff 

W[f] = a*,  c (53) 

and 

(54) 
1 
C 

W[Q] = f 2 ,  - 

where C is also a linear combination of the same exponents. 
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Further, let us introduce the formal operation J :  

Comparing (43) for f with (41) for 0. one sees that f = J n .  Further use of the 
above remark on the structure of the fractions (51) and (52) leads to the relations 

p = J0.2 w-p] = J W ( f 1 .  (55) 

wqn] = f2 ’ JC. 

Now let us apply the operation J to the relation (53). Due to (55) this gives 

Comparison of the last relation with (54) shows that 

1 - = J C  C 

By virtue of C being a h e a r  combination of exp(Cy=l nkqk),  where nk may 
1. Now, on use of (53) and be equal to 0, 1 or 2, the last relation holds only if C 

(51) we obtain the relation 

and thereby (50). 
Equations (49) and (SO) describe the N-cusp soliton solution of the HD system 

(19) completely. The phase function E ( z , t )  is defined implicitly by (49), where the 
components of the vector q are given by (45), y = x + ~ ( z , t ) .  The HD system 
solution r (z,  t )  itself is given explicitly by (50). 

Remark 1. It is clear that if t, = 0, m = 2 , .  . . , N ,  (49)-(50) give the N-cusp 
soliton solution of the HDE itself. In what follows in this section we imply this case 
( t ,  = 0,m > 2) .  

Remark 2. It can be easily seen that the RSH of (50) tends to 1 as 1z1 + 03. The 
RSH of (49) tends to 4 ~ ~ = , p ~ 1  as x - +oo. Since the function ~(z,t) is defined 
by (3) this gives the value of the integral 

In the one-soliton case (see (1) and (2)) this conserving quantity is simply the 
mass of the soliton 
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The formula (56) implies that the mass of N colliding HDE solitons is equal to the 
s u m  of the masses of each of them. 

Now we shall consider a simple sample. Equations (49) and (50) at N = 1 yield 

where C1 = p l [ z + ~ ( z , t ) ] + p ~ t - C ~ .  Thus, we obtained the well known cusp soliton 
of the €DE 161. 

For N = 2 one has 

2 

r =  (-) 
It is easy to show that solution (57), (58) splits into two cusp solitons as t +* 00. 

The appropriate asymptotics look like (we assume p, > pl) 

2 
r ( z r f )  -t--ritm rit(z,t) = n t m h  2 1  (& f -6;) 

k l  

where 

C: = p k [ z  + E;(I,~)] + - C! k = 132 

and the asymptotic phase function E$(  I, t )  is defined implicitly hy the equation 

Here 



6018 L A  Dmitriwa 

4. Concluding remarks 

Our method c m  be called the ‘higher-times approach‘ (HTA) since for the effective 
analytical construction of the N-soliton solution of the HDE the higher HDE balogues 
were used essentially. As it follows from (19) the dynamics of each equation from 
the Dym hierarchy is described in terms of its own time t,, m = 1 , .  . . , N .  Such 
approach to the HDE integration gives the necessary relations for the ‘effectivization’ 
of the links between the KdV (or mKdV) and the HDE. 

An important advantage of the HTA is invariance of its main steps with respect 
to boundary conditions for the HD hierarchy. In particular, in the framework of 
this approach the finite-gap solutions of the HDE and its higher analogues can be 
constructed explicitly. This will be done in a seperate paper. 

In conclusion we make some remarks. The solution r’(z’, t ’ ) ,  which is linked with 
the N-cusp soliton solution by a reciprocal auto-Bacicklund transformation introduced 
for the HDE in [16], turns out to be a multi-valued function on 2’ with ZN branches. 
These branches can be connected in N cross-points and yield a continuous bounded 
function F‘(z’,t‘): 1 \< F‘ < A, where A is a positive solution of the equation 
A = coth A. But the discussion of this solution is out the scope of the present paper. 

We would like also to mark the known results [18,23,25] concerning the solutions 
of the HDE with other boundaly conditions. The simplest periodic solutions were 
obtained explicitly in [W,25]. In [18] one can find the method which allows starting 
from the N-soliton solution of the KdV equation to construct on Fiite intervals 
[0, ai], i = 1,. . . , N (the constants ai are defined by the asymptotic speeds of the 
KdV N-soliton solution) N special solutions of the HDE, these solutions being obtained 
in parametric form by reciprocal transformation from N ‘interecfing’ solitons of the 
KN equation. 
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Appendix 

In this appendix we are going to prove that 

P k  = l / P k  

where Pk is defined by (47). We remind ourselves that due to (26) and (M), 
a, = E:=’=, Amk/ det P, where P is an N x N matrix with the entries Pmk = pim 
(m is the line number, IC is the column number), Amk is an algebraic adjunct of the 
element P, 

From the definition of the matrix P o n e  sees that det P = n:=l p i W ( p : ,  6 , .  . . , 
p k ) ,  where W is the Vandermonde determinant. Hence 

N 

d e t P =  n p i n ( p : - p : )  
k = l  i > j  

( A l )  
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Amk = det P("'), where the matrix P(,) is obtained from P by Further, 
changing the mth line by units. One can show that 

det P(m) = (-l)"'-' . . . p .  L," n ( P :  - Pj") (A21 
N C N - ~  i > j  

where NCN-m indicates summation over all possible combination of N - m integers 
taken from the first N integers. To prove (A2) first of all we notice that 

det P(,) = (-l)m-l det PA (A31 
where P' is the N x N matrix in which the first m lines are given as 
( p y - 2 , p p - 2 , .  . . ,p%-'), k = 1,. . . m, and the last N - m lines have the form 

Vandermonde determinant 
( p l  k , p 2  2k , . . . , p N ) ,  2k k = m f l ,  . . . , N .  Futher, we consider the ( N t  1) x ( N t  1) 

N 
2 2  W(z,Pi,Pz,.  . . ,P',) = n ( P ? -  P j ) n ( P i  - 2) E z z k A k .  (A41 

i>j 8 k = l  

It is easy to see that from one side Am = (-1)"'det PA and due to (A4) 
2 A ,  = (-1)'" Pt, . . . PiN-," . 

N C N - ~  

Hence on use of (A3) one obtains (A2). Inserting this equation into the definition 
of 0, and using (Al) we see that 

. N  

Now we remenber that the constants ,Bb are given by (47). Hence 

where 

m=l N C N - ~  

Thus, to prove the relation Pk = l /pk  one needs to show that 
N 

j l = = I I ; .  
a = l  

This can be done by means of the following calculation: 
N-1 

m-1 z(mt1) P?,...P. 2 
RSH of (M) = c ( - 1 )  pk *N--m--l 

*=l c,#k 
NCN-," 

N N 

m=2 E,#* S = 1  
N C N ~  

Changing now in the first sum the summation index m by m - 1 one obtains the 
second sum with the opposite sign. Thus, (A6) and thereby Pk = p i 1  are proved. 
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